

NEW METABOLITES FROM *PSOROSPERMUM TENUIFOLIUM**

GUILIANO DELLE MONACHE, FRANCO DELLE MONACHE,† ROSELLA DI BENEDETTO and JAMES U. OGUAKWA‡

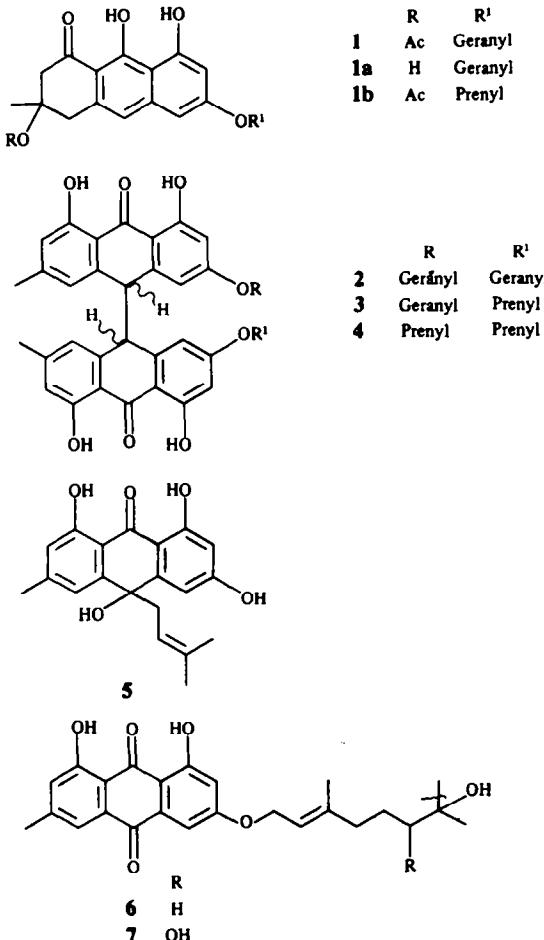
Centro Chimica dei Recettori del C.N.R., Università Cattolica S. Cuore, 00168 Roma, Italy; ‡ Department of Chemistry, University of Nigeria, Nsukka, Nigeria

(Revised received 1 February 1987)

Key Word Index—*Psorospermum tenuifolium*; Guttiferae; prenylated bianthrones; 10-isoprenylemodin-anthrano-10-ol; anthraquinone.

Abstract—Two prenylated bianthrones, an anthran-10-ol and a new emodin derivative were isolated for the first time from the root bark of *Psorospermum tenuifolium*, together with several known metabolites typical of the genus.

INTRODUCTION


The genus *Psorospermum* is a source of vismiones and other biogenetically linked anthranoids, which show cytotoxic activity [1-3] and feeding deterrence [1]. Following our chemosystematic investigation on the secondary metabolites of the tribe Vismieae (Hypericoideae), we report on our examination of the root bark of *Psorospermum tenuifolium*, collected in Nigeria.

RESULTS AND DISCUSSION

Acetylvismione D (1) [4] and vismione D (1a) [5] are the main components of the cold acetone extract of *P. tenuifolium* (~ 25 and 8%, respectively). Vismiones usually co-occur with the corresponding anthrones, bianthrones and anthraquinones, which are at least partially their transformation products formed during the isolation [6]. 3-Geranyloxychrysophanol (the geranyl ether of emodin) and the corresponding 9-anthrone were isolated again, as well as bianthrone A1 (2) [7]. Vismione H (1b) [8], where a prenyl chain is present instead of the geranyl one, was isolated as a minor component (3%). Madagascin (the prenyl ether of emodin) and its 9-anthrone were found as expected.

Two new bianthrones were also obtained and assigned structures 3 and 4 and the names bianthrone A2a and A2b. The two compounds $C_{45}H_{46}O_8$ and $C_{40}H_{38}O_8$, respectively, showed spectral (1H NMR, UV and IR) data and

chemical behaviour very close to those of bianthrone A1. In Table 1 a comparison of the mass fragmentation ions of bianthrones A1, A2a and A2b is presented. The loss of a geranyl chain (as $C_{10}H_{16}$) from $[M]^+$ was seen in the spectrum of 2, the loss of a prenyl chain (as C_5H_8) in that of 4 and the losses of a geranyl chain and a prenyl chain in

* Part 5 in the series 'Chemistry of *Psorospermum* genus', for part 4 see ref. [4]. A preliminary report was presented at the International Symposium on the Chemistry of Natural Products, Edmonton, Canada, 23-26 June 1985.

† Author to whom correspondence should be addressed.

Table 1. Mass fragmentation of bianthrone A1, A2a and A2b

	A1 (2)	A2a (3)	A2b (4)
[M] ⁺	782 (17)*	714 (2)	646 (2)
[M - C ₁₀ H ₁₆] ⁺	646 (3)	578 (2)	
[M - C ₅ H ₉] ⁺		646 (1)	578 (2)
[a] ⁺	510 (9)	510 (2)	510 (2)
[b] ⁺	392 (15)	392 (17)	
[c] ⁺		324 (42)	324 (72)
[d] ⁺	256 (100)	256 (100)	256 (100)

*m/z (rel. int.)

Table 2. ¹³C NMR spectra of anthraquinones 6 and 7 (CDCl₃)

C	6[2]	7
1	166.2	165.7
1a	110.3	110.1
2	108.9	108.6
3	162.8	162.4
4	107.8	107.6
4a	133.6	133.1
5	118.7	118.7
5a	135.5	135.1
6	148.5	148.3
7	124.6	124.4
8	165.4	165.0
8a	114.0	113.6
9	191.0	190.6
10	182.2	182.0
11	22.1	22.1
12	66.0	65.8
13	121.3	121.2
14	142.7	142.3
15	16.7	16.7
16	39.9	36.5
17	22.3	23.2
18	43.5	77.8
19	70.9	73.1
20	30.0	29.3
21	29.4	26.4

that of 3. The losses of both the 3- and 3'-O-substituents gave in each case the ion [a]⁺, corresponding to the molecular ion of emodinbianthrone. Moreover bianthrone A1 gave the ion [b]⁺, corresponding to the molecular ion of the geranyl ether of emodinanthrone, whereas bianthrone A2b gave ion [c]⁺, corresponding to the molecular ion of the prenyl ether of emodinanthrone. Notably bianthrone A2a showed both peaks [b]⁺ and [c]⁺. In all the cases the base peak, [d]⁺, corresponded to the molecular ion of emodinanthrone. Both compounds 3 and 4 on acid treatment gave emodin bianthrone, as a mixture of *meso* and (\pm) forms, as did bianthrone A1 [7]. The structures 3 and 4 are in agreement with the co-occurrence of the component anthrones.

Acetylvismione F [9], vismione F [7] and emodin were also isolated and identified by comparison with authentic samples. The low intensity molecular peak (2% at *m/z* 340)

in the EIMS spectrum of a new pigment C₂₀H₂₀O₅, 5, was confirmed in the CIMS spectrum (base peak at *m/z* 341). Its ¹H NMR spectrum showed a close similarity with that of emodin in the aromatic region as well as the presence of two chelated hydroxyl groups. In addition the signals of a γ,γ' -dimethylallyl chain were displayed, and the chemical shifts suggested a link with an sp₃ carbon. Only the absorbance of a chelated CO was present in the carbonyl region of the IR spectrum and accordingly the UV spectrum showed the presence of a chromophore less extended than in anthraquinones of the emodin type (λ_{max} ~ 430 nm) and comparable with those of xanthones or benzophenones (λ_{max} ~ 360 nm). These data and the existence of an undetermined oxygen (from the molecular formula) are consistent with the structure of a 10-isoprenylemodinanthran-10-ol (5). Notably in the mass spectrum the loss of the prenyl chain (as C₅H₉) from [M]⁺ gave rise to the oxonium ion e, C₁₅H₁₁O₅ (base peak).

The emodin derivative C₂₃H₂₈O₆, 6, also present in the extract, has been reported from *Psorospermum febrifugum* [2]. We have now isolated a more polar pigment C₂₅H₂₈O₇, 7, closely related to 6. The ¹H NMR (in the aromatic region) and UV-VIS spectra were coincident and the difference between the two compounds, ie the extra oxygen of 7, was localized on the C₁₀ chain. In the mass spectrum of 7 the loss of the C₁₀ chain gave the base peak as in those of 6 and 3-geranyloxyemodin. A broad triplet (1H) at 83.83 suggested the presence of a CH₂CH(OH) group in 7, while the comparison (Table 2) between the ¹³C NMR spectra of the two compounds was conclusive. The close coincidence of the carbon signals was perturbed at the level of C-16 and C-18 was thought to bear the new oxygen by its large paramagnetic shift to δ 77.8. The smaller downfield shifts of C-17 and C-19 and upfield shifts of C-16, C-20 and C-21 were in agreement with the introduction (β and γ effects) of an oxygen in C-18 [10]. Thus structure 7 was assigned to the last new metabolite.

EXPERIMENTAL

Plant material. Roots of *P. tenuifolium* were collected in Nigeria by one of us (J.U.O.). A voucher specimen PST-85 is deposited in the Herbarium of Centro Chimica dei Recettori.

Extraction and fractionation. Air-dried, finely ground bark of roots (310 g) was extracted exhaustively with cold Me₂CO, the pooled extracts giving a residue of 50 g. CC of a part of the extract (10 g) on silica gel eluted with CH₂Cl₂-EtOAc mixtures afforded nine fractions (PT1-PT9) which on further purification yielded: 3-geranyloxychrysophanol [5] (100 mg, mp 124-126°) from PT1 (crystallization from Et₂O); 3-geranyloxychrysophanol (230 mg) and madagascin [11] (140 mg, mp 157-158°) from PT2 (silica gel; C₆H₆-hexane, 2:1); 3-geranyloxy-6-methyl-1,8-dihydroxyanthraquinone [12] (120 mg, mp 98-99°), madagascinanthrone [11] (60 mg, mp 163-164°), friedelin (60 mg), bianthrone A1 [7] (2, 50 mg, mp 134-136°), bianthrone A2a (3, 120 mg) and bianthrone A2b (4, 30 mg) from PT3 (silica gel; C₆H₆-hexane, 3:1, and C₆H₆); acetylvismione D [4] (1, 2.5 g, mp 65-66°) from PT4 (silica gel; CH₂Cl₂); vismione H [8] (260 mg, mp 109-112°) from PT5 (silica gel; CH₂Cl₂); acetylvismione F [9] (150 mg, mp 118-120°) from PT6 (silica gel; CH₂Cl₂-EtOAc, 19:1); emodin (350 mg), 3-(18,19-dihydro-19-hydroxygeranyl-oxo)-6-methyl-1,8-dihydroxyanthraquinone [2] (6, 80 mg, mp 105-106°), betulin (30 mg) and 10-isopentenylemodinanthran-10-ol (5, 25 mg) from PT7 (silica gel; CH₂Cl₂-EtOAc, 9:1); vismione D [5] (2, 800 mg, mp 142-144°) and vismione F [7]

(120 mg, mp 144–145°) from PT8 (silica gel; hexane–EtOAc, 3:2); 3-(18, 19-dihydro-18, 19-dihydroxygeranyloxy)-6-methyl-1,8-dihydroxyanthraquinone (6, 40 mg) from PT9 (PLC silica gel; hexane–EtOAc, 3:2). The known compounds were identified by comparison (spectral data, co-TLC and mmp) with authentic samples.

Bianthrone A2a (3). $C_{45}H_{46}O_8$ (Found: C, 76.0; H, 6.2%). Calc.: C, 75.6; H, 6.4%; mp 81–83° (Et₂O–hexane); $\alpha_D = 0^\circ$; UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm: 280, 362; ¹H NMR (CDCl₃): δ 12.23, 12.15, 11.96, 11.88 (1H each, s, 1-OH, 1'-OH, 8-OH, 8'-OH), 6.68 (2H, br s, H-5, H-5'), 6.36 (2H, br s, H-4, H-4'), 6.08 (2H, br s, H-7, H-7'), 5.98 (2H, br s, H-2, H-2'), 5.45 (2H, br t, $J = 7$ Hz, 2 \times CH=), 5.10 (1H, m, CH=), 4.55 (4H, br d, $J = 7$ Hz, 2 \times OCH₂), 4.28 (2H, br s, H-10, H-10'), 2.33, 2.29 (3H each, s, 6-Me, 6'-Me), 2.3 \div 2.1 (8H, m, 4 \times CH₂), 1.79 (9H, br s, 3 \times Me), 1.73, 1.67 (3H each s, 2 \times Me); EIMS (probe) 70 eV: Table 1. Bianthrone A2a (80 mg) was refluxed for 1 h in 3M HCl. Standard work-up and purification on silica gel (CHCl₃–MeOH, 49:1) gave 10,10'-emodinbianthrone (25 mg) as a 1:1 mixture of *meso* and (\pm) diastereoisomers, identified by comparison with an authentic specimen [7].

Bianthrone A2b (4). $C_{40}H_{38}O_8$ (Found: C, 74.9; H, 5.8%). Calc.: C, 74.3; H, 5.9; mp 178–179° (Et₂O–hexane); $\alpha_D = 0^\circ$; UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 280, 362; ¹H NMR (CDCl₃): δ 12.17, 12.09, 11.85, 11.80 (1H each, 1-OH, 1'-OH, 8-OH, 8'-OH), 6.68 (2H, br s, H-5, H-5'), 6.33 (2H, br s, H-4, H-4'), 6.08 (2H, br s, H-7, H-7'), 5.97 (2H, br s, H-2, H-2'), 5.45 (2H, br t, $J = 7$ Hz, 2 \times CH=), 4.48 (2H, br d, $J = 7$ Hz, 2 \times OCH₂), 4.28 (2H, br s, H-10, H-10'), 2.32, 2.29 (3H each, s, 6-Me, 6'-Me), 1.83 (12H, br s, 4 \times Me); EIMS (probe) 70 eV: Table 1. Bianthrone A2b (65 mg) gave 10,10'-emodinbianthrone (20 mg) under the same conditions as those described for its formation from bianthrone A2a.

10-Isopentenylmodinantran-10-ol (5). $C_{20}H_{20}O_5$, [M]⁺ found 340.1300, calcd 340.1310; mp 190–192° (MeOH); UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 258 (3.63), 274 (3.68), 368 (3.83); $\lambda_{\text{max}}^{\text{NaOAc}}$: 258, 268, 390; ¹H NMR (CD₃COCD₃): δ 12.33, 12.15 (1H each, s, 1-OH, 8-OH), 7.25 (1H, d, $J = 1.5$ Hz, H-5), 7.0 (1H, d, $J = 2$ Hz, H-4), 6.65 (1H, d, $J = 1.5$ Hz, H-7), 6.28 (1H, d, $J = 2$ Hz, H-2), 4.60 (1H, m, CH=), 2.55 (2H, d, $J = 7$ Hz, CH₂), 2.40 (3H, s, 6-Me), 1.45, 1.02 (3H each, br s, 2 \times Me); IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3420, 3360, 1636, 1612, 1595; EIMS m/z (rel. int.): 340 [M]⁺ (2), 271 (Found 271.0616, calcd for C₁₅H₁₁O₅, 271.0606) [M – C₅H₉]⁺ (100), 270 (15), 256 (4), 229 (15), 201 (8), 69 (16), 41 (12); m^{*}: 216.0 (340 \rightarrow 271), 193.5 (271 \rightarrow 229), 176.4 (229 \rightarrow 201); CIMS m/z (rel. int.): 341 [M + H]⁺ (100), 325 [M – Me]⁺ (28), 323 (15), 271 [M – C₅H₉]⁺, 260 (22), 257 (25), 256 (10).

3-(18,19-Dihydro-18,19-dihydroxygeranyloxy)-1,8-dihydroxy-6-methylantraquinone (6). $C_{23}H_{28}O_7$, [M]⁺ found 440.1835, calcd 440.1835; mp 80–82° (EtOH); UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 253 (4.10), 266 (4.12), 285 (4.10), 436 (3.93); IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3420, 1670, 1625, 1605, 1560; ¹H NMR (Me₂CO-*d*₆): δ 12.0, 11.83 (1H each, s, 1-OH, 8-OH), 7.35 (1H, d, $J = 1.8$ Hz, H-5), 7.05 (1H, d, $J = 2.5$ Hz, H-4), 6.95 (1H, d, $J = 1.8$ Hz, H-7), 6.57 (1H, d, $J = 2.5$ Hz, H-2), 5.60 (2H, br, 2 \times OH), 5.50 (1H, br t, $J = 6.5$ Hz, CH=), 4.70 (2H, d, $J = 6.5$ Hz, OCH₂), 3.83 (1H, br t, $J = 6$ Hz, 18-H), 3.50 \div 2.80 (4H, m, 2 \times CH₂), 2.37 (3H, br s, 6-Me), 1.81 (3H, br s, 14-Me), 1.11 (6H, s, 20-Me, 21-Me); ¹³C NMR: see Table 2; EIMS m/z (rel. int.): 440 [M]⁺ (8), 422 [M – H₂O]⁺ (2), 382 [M – C₃H₆O]⁺ (3), 323 [382 – C₃H₆O]⁺ (4), 321 (6), 295 (4), 284 (5), 283 (6), 270 [M – C₁₀H₁₈O₂]⁺ (100), 256 (10), 242 (8), 241 (6), 229 (2), 213 (4), 153 [C₁₀H₁₇O]⁺ (7), 59 [C₃H₆O]⁺ (18).

REFERENCES

1. Delle Monache, F. (1985) *Rev. Latinoam. Quim.* **16**, 5.
2. Marston, A., Chapuis, J.-C., Sordat, B., Msonthi, J. D. and Hostettmann, K. (1986) *Planta med.* **3**, 207.
3. Cassinelli, G., Geroni, C., Botta, B., Delle Monache, G. and Delle Monache, F. (1986) *J. Nat. Prod.* **49**, 929.
4. Botta, B., Delle Monache, F., Delle Monache, G. and Kabangu, K. (1986) *Phytochemistry* **25**, 766.
5. Botta, B., Delle Monache, F., Delle Monache, G., Marini Bettolo, G. B. and Oguakwa J. U. (1983) *Phytochemistry* **22**, 539.
6. Delle Monache, F., Ferrari, F., Marini Bettolo, G. B., Maxfield, P., Cerrini, S., Fedeli, W., Gavuzzo, E. and Vaciago, A. (1979) *Gazz. Chim. Ital.* **109**, 301.
7. Botta, B., Delle Monache, F., Delle Monache, G., Marini Bettolo, G. B. and Msonthi, J. D. (1985) *Phytochemistry* **24**, 827.
8. Botta, B., Delle Monache, G., Delle Monache, F., Marini Bettolo, G. B. and Menichini, F. (1986) *Phytochemistry* **25**, 1217.
9. Delle Monache, F., Botta, B., Delle Monache, G. and Marini Bettolo, G. B. (1985) *Phytochemistry* **24**, 1855.
10. Stothers, J. B. (1972) *Carbon-13 NMR Spectroscopy*, p. 139. Academic Press, New York.
11. Ritchie, E., Taylor, W. C. and Shannon, J. S. (1964) *Tetrahedron Letters* 1431.
12. Amonkar, A., Chang, C.-J. and Cassady, J. M. (1981) *Experientia* **37**, 1138.